

Applying Model-based Diagnosis to a Rapid Propellant Loading System

Charlie Goodrich*. Sriram Narasimhan**, Matthew Daigle**, Walter Hatfield*, Robert Johnson*

*NASA Kennedy Space Center USA (e-mail:
charles.h.goodrich@nasa.gov,walter.h.hatfield@nasa.gov,robert.g.johnson@nasa.gov),

**University of California Santa Cruz USA (e-mail:sriram.narasimhan-1@nasa.gov, matthew.j.daigle@nasa.gov)

Abstract: The overall objective of the US Air Force Research Laboratory (AFRL) Rapid Propellant
Loading (RPL) Program is to develop a launch vehicle, payload and ground support equipment that can
support a rapid propellant load and launch within one hour. NASA Kennedy Space Center (KSC) has been
funded by AFRL to develop hardware and software to demonstrate this capability. The key features of the
software would be the ability to recognize and adapt to failures in the physical hardware components,
advise operators of equipment faults and workarounds, and put the system in a safe configuration if unable
to fly. In December 2008 NASA KSC and NASA Ames Research Center (ARC) demonstrated model-
based simulation and diagnosis capabilities for a scaled-down configuration of the RPL hardware. In this
paper we present a description of the model-based technologies that were included as part of this
demonstration and the results that were achieved. In continuation of this work we are currently testing the
technologies on a simulation of the complete RPL system. Later in the year, when the RPL hardware is
ready, we will be integrating these technologies with the real-time operation of the system to provide live
state estimates. In future years we will be developing the capability to recover from faulty conditions via
redundancy and reconfiguration.

1. INTRODUCTION

Rapid propellant loading deals with transferring large
amounts (~50,000 gallons) of cryogenic propellant from a
storage tank to a vehicle tank. The vehicle tank, though
large, is relatively fragile. The vehicle designers have
prescribed strict pressure limits for the tank and associated
valves. When the cold cryogen liquid first contacts the warm
tank and connecting piping, it boils and vaporizes, generating
large volumes of gas. This translates to high flow rates and
pressures. For this reason, cryogen loading is generally done
very slowly using a very structured sequence of events:
chilling the cryogen pumps and associated transfer pipes,
chilling the vehicle with cold gas, followed by small
quantities of cryogen liquid, slow filling of the vehicle with
liquid to a predefined level, fast filling the tank to near
operating level, slowly topping off the tank to the maximum
quantity and incremental replenishment of cryogen liquid that
constantly boils off from the vehicle tank prior to launch.

Normally, the process takes about 2-3 hours and a crew of 4
to 8 engineers watches all the equipment on the ground and in
the vehicle during this sequence. The engineers are familiar
with the physics of cryogenic liquid flow, the pressures and
temperatures involved, typical faults that occur with
temperature and flow measurements, stuck valves, faulty
position indicators, high or low pressure measurements and
occasional blown fuses and open circuit breakers. They stand
ready to diagnose problems and devise workarounds for
faults to complete the loading process and launch the vehicle.

The US Air Force would like to build some of the
engineering expertise of the cryogen loading team into the
computer system that controls the loading operation. They
would like to launch the rocket with a crew of three sergeant-
level personnel who may have no engineering experience and
limited training in cryogen operations. To this end, the US
Air Force Research Laboratory (AFRL) has funded a
prototype project at NASA Kennedy Space Center (KSC) to
explore rapid cryogenic propellant loading (RPL). The task
has two primary goals:

1. Reduce the entire loading operation time to 45 minutes
(as opposed to the normal 2-3 hours).

2. Develop software that automates the loading of the
vehicle tank with cryogens with minimum operator
supervision.

The project is expected to proceed in three phases. In Phase I
a small-scale hardware test bed will be built. Supporting
software that performs passive diagnosis and some implicit
fault accommodation and recovery will also be developed.
Phase II will deal with building a larger scale hardware which
would include fuel and oxidizer and perform automated
umbilical mating and leak detection. Phase III would be a
flight demonstration of the developed hardware and software.

The software task of the Phase I project had the following
objectives:

1. Development of a preliminary cryogenic test
configuration

2. Development of use cases for the preliminary
configuration

3. Development of a simulation model of the
preliminary cryogenic test configuration (a “mini-
model”) to conduct tests using the preliminary
configuration and use cases

4. Evaluation of the fault detection isolation and
recovery (FDIR) application development tools
using the mini-model and use cases

5. Development of the RPL Control Architecture
6. Update of the mini-model to the demonstration test

bed simulation
7. Testing of the selected Control Architecture with the

demonstration test bed simulation.
8. Integration of the Control Architecture with the

actual cryogenic test bed hardware
9. Testing of the Control Architecture with the

cryogenic hardware

Requirements 1-4 were completed and demonstrated to
AFRL in December 2008. In this paper we describe the work
that was done in completing the requirements, the setup for
the demonstration and some representative scenarios and
results.

Our approach to solving this problem was to use model-based
technologies where the models themselves would be
component-based. The primary reason for this approach was
that we would be testing diagnosis algorithms on different
systems from the same domain (preliminary configuration,
complete RPL configuration, actual hardware). Moreover the
models were being built while the system configuration was
being finalized. Hence component-based models would allow
us to compose different system configurations by
instantiating appropriate components and connecting them
according to the system structure. This approach also allows
us to tie anomalous behavior to component faults in a
straightforward way.

We selected MATLAB/Simulink® as the language of choice
for the simulation model. To support requirement 4, it was
decided to evaluate two model-based diagnosis technologies,
namely, Hybrid Diagnosis Engine (HyDE) and Knowledge-
based Autonomous Test Engineer (KATE). These two
technologies were chosen because of the availability of
developers of the two systems. Other technologies may be
considered in future years.

The rest of the paper is organized as follows. Section 2
describes the mini-model configuration and faults selected for
testing based on use-cases analysis (Requirements 1 and 2).
Section 3 describes the MATLAB/Simulink models with
fault injection capabilities that were used to generate data for
testing (Requirement 3). Section 4 describes HyDE and how
models of the mini-model were built in HyDE. Section 5
describes KATE and the efforts to create the mini-model
configuration in KATE. Section 6 presents the experimental
setup (which was exactly what was demonstrated) that was
used to test HyDE and KATE on nominal and faulty data

from the simulation and the results from a few representative
scenarios.

2. Mini-Model Configuration

2.1 Preliminary Test Configuration

Figure 1 presents the preliminary cryogenic test configuration
(referred to as the mini-model) used for evaluating the model-
based diagnosis technologies. The storage tank and vehicle
tank both have vent valves (C3 and C4) to regulate the ullage
pressure. Three transfer lines connect the tanks to regulate
flow between. The main transfer line (top most) and the
auxiliary transfer line (second from top) contain pumps that
can be controlled to regulate the flows at various rates
depending on pump RPM. Both lines contain manually
operated valves (G1, G2), remotely operated valves (C1, C2)
and flow control valves (A1, A2) to control the flow. The
manually and remotely operated valves can be full open or
full closed only, whereas the flow control valves can be
controlled to be open to any desired percentage. A re-
circulation line (bottom most) controlled only by a flow
control valve is used to send back excess liquid to the storage
tank. The path to the vehicle tank is also controlled by a flow
control valve to regulate the ratio of flow going to the vehicle
tank and the flow re-circulating to the storage tank.

2.2 Definition of Nominal Operation and Fault Scenarios

Experienced propellant loading engineers stipulated the
components and their capacity and likely scenarios for
nominal loading operation satisfying the requirements put
forth by AFRL. For the sake of the preliminary testing, we
decided to ignore the chill down phase, assuming instead that
all components were already ready for transferring cryogens.
The stages of nominal operations were identified as (i)
initialization (ii) slow fill (iii) fast fill (iv) topping (v)
replenish and (iv) drain-back in the event of a launch scrub. It
was assumed the system would follow this pre-determined
sequence except when recovery actions required changes to
the sequence.

Engineers also specified likely sensor and component failures
based on general knowledge about the components involved
and also on prior experience with liquid oxygen loading for
the Space Shuttle. The typical faults were identified as sensor
(pressure and flow) failures, pump failures and valve (stuck
open or stuck closed failures). Some other common failures
involving power and data acquisition modules were not
included for this initial configuration.

Since we were using a simulation to generate data we had the
flexibility of defining which values of the system could be
sensed. Typical quantities like flows, pressures, valve
positions and tank levels were included corresponding to
typical measurement points in the actual hardware. Selected
observation points are marked with white circles in Figure 1.
We were able to take advantage of the flexibility to test the
sensitivity of model-based diagnosis tools when faced with
different sets of sensor observations. In the future, we hope to

use this as a valuable tool to determine sensor placement and
diagnosability.

3. Matlab Simulation

In order to evaluate our model-based diagnosis tools, we
developed a simulation of the system. The simulation serves
as a virtual test bed where we can easily study a large number
of fault scenarios to develop our diagnosis models and test
our algorithms. Clearly, if an accurate and realistic simulation
is developed, then less work is required in migrating
diagnosis algorithms to the actual system.

To this end, we developed a physics-based simulation of the
system in MATLAB/Simulink. We adopted a component-
based modeling paradigm, where parameterized simulation
models of generic components including tanks, valves, pipes,
pumps, and sensors were developed within a component
library. The overall system model is constructed by
instantiating the different components from the component
library, specifying their parameters, and connecting the
components to each other in the appropriate fashion. The top
level of the Simulink model which corresponds to the mini-
model schematic is illustrated in Figure 2.

Each component model includes their associated fault modes.
For example, a control valve may become stuck at a
particular position, or its orifice may become partially

blocked. The fault mode, time of fault injection, and fault
magnitude (where applicable) can all be specified. In general,
each fault mode is mapped to a change in component mode
and a fault-dependent magnitude parameter. Because each
fault mode is parameterized within the Simulink model, a
fault can be injected programmatically (i.e., the fault mode,
injection time, and magnitude are specified) either at the
beginning of the simulation, or while the simulation is
running. The component model of a valve with fault injection
capabilities is shown in Figure 3.

4. HyDE

4.1 Description

Hybrid Diagnosis Engine (HyDE) is a model-based reasoning
engine for hybrid (discrete + continuous) diagnosis. HyDE is
able to diagnose multiple discrete faults using consistency
checking between prediction from hybrid models and sensor
observations. HyDE models are component-based and are
similar to simulation models. Component models are
expressed in terms of behavior in different modes of
operation (called locations) including faulty modes with
transitions representing the conditions under which the
system changes locations. The system model is composed by
connecting shared variables between the various components.
The HyDE reasoning engine uses the model both for
simulation and candidate generation. A set of consistent

Storage Tank

Vehicle

Tank

G1 C1
A1

Pump 1

G2 C2
A2

Pump 2

A4

A3

F2

F3
P1

P2

P3

P4

P5

P6

P7

C3

C4

L1

L2

V1

V2

V3

V4

V5

V6

V7

V8

Main

Transfer Line

Auxiliary

Transfer Line

Recirculation

Line

F1

Figure 1: Mini-model configuration

candidates, each of which may include multiple hypothesized
faults, represents the diagnosis. At each time step the
candidates are tested for consistency against sensor
observations (using simulation) and if found inconsistent new
candidates are generated (using candidate generation). For
details please refer to (Narasimhan and Brownston 2007).

4.2 HyDE Models of Mini-model Configuration

The HyDE model for the mini-model configuration (Figure
4) was constructed to look like the Simulink model described
earlier. Each component and subsystem in the Simulink
model is replicated in the HyDE model. Variables inside each
component are also exactly the same as in the Simulink

model. This also allowed the connections between
components via shared variables to be duplicated in the
HyDE model. The behavior within each component had to be
modified so as to be represented as hybrid automata (finite
state automata with equations in each state). This was done
by identifying the modes of operation of the components
including the fault modes based on fault injection
capabilities. The equations within each mode can be
determined by substituting appropriate parameter values
corresponding to the different modes as specified in the
MATLAB model. The HyDE model of a valve is illustrated
in Figure 5.

The reasoning parameters for HyDE had to be fine-tuned to
provide the best performance. The fixed-step Runge-Kutta
ODE solver was implemented to simulate behavior across
time-steps. There were still some numerical problems since
numerical precision used in MATLAB was far superior. As a
result the tolerance for fault detection had to be increased (the
default was 2%) for some observed variables. For fault
isolation the maximum fault size was set to 3 (indicating a
maximum of 3 faults in the system). The diagnostic results
from HyDE are presented in Section 6.

Figure 2: Simulink model of mini-model configuration

 Valve Position

2

Volume Flow

1

StuckFaultInject

True Signal Faulty Signal

Product1

Product

Orifice Area

A

Fault Mode

Calculate Flow

f(u)

Pressure Right

3
Pressure Left

2

Control Signal

1

Figure 3: Valve component model with fault

injection capabilities

Figure 4: HyDE model of mini-model configuration

5. KATE

5.1 Description

KATE is a C++ model-based diagnosis system developed by
NASA circa 1993 at Kennedy Space Center (Jamieson et al.

1985, Scarl et al. 1987, Goodrich 1995). It was developed to
employ Fault Detection, Isolation and Recovery (FDIR)
technology to deal with component faults during the Space
Shuttle Countdown.

The Shuttle's Launch Processing System (LPS) was
programmed to sequence through normal operations and
"hold" the countdown if unanticipated sensor readings are
encountered. KATE was developed to help Shuttle engineers
decide whether such an exception is significant, diagnose the
problem, and decide whether or not to continue the
countdown.

KATE is a generic software shell for performing model-
based FDIR. Each KATE application requires a knowledge-
base or model of the system. The same model-based
reasoning algorithms are used for each application. The main
reasoning systems are:

- Simulation - using a component-based model of a system,
the simulation subsystem generates a prediction of behavior
of the application system.

- Monitoring - by comparing the predicted sensor values
generated by the simulation subsystem with the actual sensor
readings of the application system, the monitoring subsystem

Figure 5: HyDE model of Valve component

Figure 6: KATE in action for mini-model configuration

is able to provide system health status.

- Diagnosis - When a discrepancy between the predicted and
actual sensor values is detected, the diagnosis subsystem
exploits the structural and functional relationships of the
components in the model to determine the failed
component(s) that would explain the discrepancy.

5.2 KATE models of mini-model configuration

The KATE model for the mini-model configuration was built
by identifying all the components in the mini-model and
considering their likely failure modes. The components
include propellant tanks, pumps, valves and sensors. The
mini-model uses component behavior defined for the Space
Shuttle' KATE LOX application developed in 1986 and
refined in 1994. Additional component models were used
from a USAF Advanced Launch Operations demonstration
developed in 1993. KATE's mini-model was constructed by
defining connections between components selected from
these pre-existing libraries. Some modifications of the C++
code in the libraries were made to account for the parallel
pumping defined in the mini-model.

The resulting "flat file" model simply specified mini-model
components from the libraries and connections between the
components. KATE was able to diagnose faults by reading
data generated by the Matlab simulation. The diagnostic
results from KATE are presented in the next section.

6. Experimental Setup, Demo and Scenarios

In order to demonstrate the simulation and diagnosis
capabilities we created command line and visual interfaces.
Using the command line interface, the user can specify an
experiment, parameterized by a set of faults to inject, the

amount of noise for each sensor, and the sample time of the
sensors. The simulation is then automatically executed with
these parameters, and the resulting input and output data is
written to files for input to the diagnostic tools. Currently we
support the creation of data files recognized by HyDE and
KATE tools.

The visual interface, a GUI in MATLAB, provides an
overview schematic of the mini-model configuration and
allows the user to setup the experiment. The GUI is linked to
the Simulink model. It sends the user specified parameters to
Simulink and runs the simulation for the specified time. All
input and output values are updated on the GUI as the
simulation progresses. The user can also change the inputs
online to recover from failures, and click on any variable in
the GUI to see a time series plot. Figure 7 shows the GUI in
action.

In addition, we have also implemented an interface from the
GUI/Simulink to HyDE. This was achieved by creating a
MEX function in C++ that acts as the interface. The MEX
function, which is linked to HyDE static library, creates an
instance of HyDE, loads the appropriate model and
configuration parameters into HyDE and then executes HyDE
API functions in step with the simulation. Command and
sensor data from the simulation is sent to HyDE at each time
step. The diagnosis candidates from HyDE are listed in the
GUI (lower left side). When the user clicks on each
candidate, faulty components are colored red in the schematic
to provide a visual indication.

Due to lack of time, an interface between the GUI and KATE
was not created. We chose instead to exercise KATE using
the data files generated (either using the command line
interface or the GUI).

Figure 7: GUI used in demonstration

We present and discuss results from 4 scenarios. These were
the same 4 scenarios used in the demonstration. The nominal
operational sequence was selected to mimic the stages of a
realistic cryogenic propellant loading. The first scenario was
the complete nominal scenario with the goal of validating the
realism of the simulated data. Three fault scenarios were
selected based on use case analysis that determined some
common failures (discussed in Section 2). Note that HyDE
did not use the valve position sensors in any of the scenarios.

The first fault scenario was a flow control valve (A1) stuck
open during the slow fill stage (at 300 s). The flow control
valves can be controlled on a continuous scale from 0 to 1 to
regulate the flow. There is a flow control valve in the main
and auxiliary lines and in the common discharge line leading
to the vehicle tank (Figure 1). When one of these valves is
stuck open it is necessary to regulate the flow in that line
using other means. HyDE and KATE are able to diagnose
this situation right after observations for time 300 s are
available. We determined that the recovery action for this
fault was to regulate the flow by decreasing the Pump 1 speed
to 275 RPM during slow fill to achieve the required net flow
to the vehicle tank. Figure 8 shows the profiles of some key
measurements for this scenario.

The second fault scenario was a vent valve failure (stuck
closed). The operation of this valve is modeled as an
autonomous mode change (is not externally commanded). Its
nominal behavior is to regulate the ullage pressure of the
vehicle tank between 2 and 7 psig. Because the state of the
valve is not directly commanded, this adds a level of
difficulty to the reasoning process. Further, this was a critical
fault scenario because if nothing was done, then the ullage
pressure in the tank would keep increasing, resulting in
catastrophic failure. The other interesting feature of this
failure is that it can only be detected when the vent valve is
predicted to be in open state since the behavior when the
valve is in the closed state and the stuck closed state is
identical. The scenario chosen failed the valve when it is in
the closed state (1100 s). At 1254 s, the ullage pressure (P7)
exceeds 7 psig, and the valve should have closed. At this
point, HyDE and KATE are able to diagnose that the valve is
stuck closed, although they cannot determine the time at
which the failure occurred since it may have occurred at any
time during which the valve was in the closed state. In this
situation, the system is unsafe and loading operations must be
aborted. Therefore, the recovery action is to drain the
propellant back from the vehicle tank to the storage tank by
shutting down the pumps and opening up all the valves.
Figure 9 illustrates the profiles of some key measurements in
this scenario.

The third fault scenario was a double fault case where a pump
(Pump 1) and a down stream flow sensor (F1) failed. Only
HyDE was run on this scenario since KATE currently does
not support multiple fault diagnosis. Additionally, we also
decided to use only flow sensors to demonstrate the sensor
fusion capabilities of HyDE when limited sensing is
available. When the pump in the main transfer line fails, it is
expected that the flow sensor in the main transfer line would
indicate this failure. However, if the flow sensor has failed, it

is necessary to use other sensors (namely flow sensors in the
auxiliary transfer line and the vehicle tank subsystem) to
diagnose the pump failure. HyDE is able to do exactly that
albeit taking a couple of time-steps since the effects on the
other flow sensors is not immediately seen. The recovery
action for this situation was determined to be increasing the
pump RPM in the auxiliary transfer line to 375 RPM and
opening up the flow control valve in that line completely, in
order to regain the nominal flow into the vehicle tank. Figure
10 shows the profiles of some key measurements for this
scenario.

Although we presented only three fault scenarios, we tested
HyDE and KATE extensively by varying the number of
faults injected (only single faults for KATE), the time at
which the faults are injected, the sensor noise, and which
sensor observations were available to the diagnosis engines.
The engines were able to diagnose the true faults in more
than 99% of the cases.

6. Conclusions and Future Work

In this paper we presented an application of model-based
simulation and diagnosis work to a scaled-down version of a
rapid propellant loading system. We demonstrated the
detection and isolation of some common failure scenarios. In
the process we also developed a component-based simulation
in MATLAB and showed its usefulness in testing and
evaluating FDIR applications.

The next steps in the project involve the completion of
requirements 5-9 detailed in the introduction. We are in the
process of developing a software architecture based on the
Internet Communication Engine (ICE) (Henning 2004) to
support requirement 5. ICE uses a “publish-subscribe”
protocol for communication. In the architecture which was
adopted from the Advance Diagnostics and Prognostics Test
bed (ADAPT) (Poll et al. 2007), the MATLAB simulation
will subscribe to the user inputs (including commands) and
publish sensor data. The operation of the simulation is similar
to the Virtual ADAPT simulation. HyDE and KATE will
subscribe to the user inputs and sensor data and publish
diagnosis results. The MATLAB model is being updated to
reflect the hardware test bed being constructed (requirement
6). HyDE and KATE models will be built for the new
configuration and a demonstration of the results is scheduled
for late April 2009 (requirement 7). When the test bed
hardware has been built, the control architecture can be easily
modified by replacing the MATLAB simulation with the
LABVIEW module performing the data acquisition on the
hardware (requirement 8). HyDE and KATE models can then
be tested against data generated from the actual hardware
(requirement 9).

Phase II of the project would deal with the implementation of
automated synthesis of recovery actions based on the current
state of the system. This may have to be interleaved with the
diagnosis process for 2 reasons: (i) the diagnosis engine
frequently reports ambiguities and recovery actions may have
to be taken to avoid catastrophic effects of any faults
reported, if time is taken to wait for further disambiguation

(ii) in some cases recovery actions may be used to provide
information helpful in disambiguating faults.

Acknowledgements

The authors are indebted to the RPL development team at
NASA Kennedy Space Center, FL and the Discovery and
Systems Health Area at NASA Ames Research Center
whose work made this publication possible including Barbara
Brown,Bradley Burns, Bert Cummings, Bob Ferrell, Jesse
Goerz, Kevin Jumper, Jan Lomness, Jose' Perotti, David
Richter and Jared Sass.

REFERENCES

Narasimhan, S., and L. Brownston (2007). HyDE – A
General Framework for Stochastic and Hybrid Model-
based Diagnosis. In: Proc. 18th International
Workshop on Principles of Diagnosis (DX ’07),
 Nashville, USA, pp. 162-169.

Jamieson, J., E. Scarl, and C.I. Delaune 1985. A Knowledge
Based Expert System for Propellant System Monitoring
at the Kennedy Space Center." In Proceedings of
the 22nd Space Congress (Cocoa Beach, FL. Apr.)
1-9

0 100 200 300 400 500
-3

-2

-1

0

1

2

3

4

Time (s)

F
1

(
g
p
m
)

Flow Through Primary Transfer Line

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

Time (s)

P
3

(
g
p
m
)

Pump 1 Discharge Pressure

0 100 200 300 400 500
-6

-4

-2

0

2

4

Time (s)

F
3

(
g
p
m
)

Flow to Vehicle Tank

A1 Stuck Open at 300 s

User Recovery at 320 s

Actual

Nominal

Figure 8: Fault Scenario 1 with stuck control valve

0 500 1000 1500 2000
-4

-2

0

2

4

6

8

10

Time (s)

P
7

(
p
s
i
g
)

Vehicle Tank Ullage Pressure

0 500 1000 1500 2000
-40

-20

0

20

40

60

80

Time (s)

F
3

(
g
p
m
)

Flow to Vehicle Tank

0 500 1000 1500 2000
-200

0

200

400

600

800

1000

Time (s)

L
2

(
g
a
l
l
o
n
s
)

Vehicle Tank Level

C4 Stuck Closed at 1100 s

User Recovery at 1350 s

Actual

Nominal

Figure 9: Fault Scenario 2 with stuck vent valve

0 100 200 300 400 500
-3

-2

-1

0

1

2

3

Time (s)

F
1

(
g
p
m
)

Flow Through Primary Transfer Line

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

Time (s)

P
3

(
g
p
m
)

Pump 1 Discharge Pressure

0 100 200 300 400 500
-6

-4

-2

0

2

4

Time (s)

F
3

(
g
p
m
)

Flow to Vehicle Tank

F1 Fails at 300 s

Pump 1 Fails at 350 s

User Recovery at 380 s

Actual

Nominal

Figure 10: Fault Scenario 3 with double fault

E.A. Scarl, J.R. Jamieson, and C.I. Delaune, 1987. Diagnosis
and Sensor Validation through Knowledge of Structure
and Function, IEEE-Transactions on Systems,
Man, and Cybernetics, SMC-17, No. 3, May/June
1987.

Goodrich, Charles, 1995, “A Method for Diagnosing Time
Dependent Faults using Model-Based Reasoning
Systems”, FLAIRS (Florida AI Research
Symposium)

Henning, M. (2004), A New Approach to Object-Oriented
Middleware. IEEE Internet Computing, Vol. 8,
Issue: 1, pp. 66-75.

Poll S., Patterson-Hine A., Roychoudhury I., Daigle M.,
Biswas G., et al. (2007), Evaluation, Selection, and
Application of Model-based Diagnosis Tools and
Approaches. AIAA-2007-2941. AIAA
Infotech@Aerospace 2007, Rohnert Park, CA, May
7-10, 2007

